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ABSTRACT 11 

Rapid and accurate acquisition of urban flood information is crucial for flood prevention, disaster 12 

mitigation, and emergency management. With the development of mobile internet, crowdsourced images on 13 

social media have been emerged as a novel and effective data source for flood information collection. 14 

However, selecting appropriate targets and employing suitable methods to determine flooding level has not 15 

been well investigated. This study proposes a method to assess urban flood risk levels based on the 16 

submerged status of buses captured in social media images. First, a dataset containing 1008 images in 17 

complex scenes is constructed from social media. The images are annotated using Labelimg, and expanded 18 

with a data augmentation strategy. Four YOLOv8 configurations are validated for their ability to identify 19 

urban flood risk levels. The validation process involves training the models on original datasets, augmented 20 

datasets, and datasets representing complex scenes. Results demonstrate that, compared to traditional 21 

reference objects (e.g., cars), buses exhibit greater stability and higher accuracy in identification of urban 22 

flood risk levels due to their standardized height and widespread presence as they remain service during 23 

flood events. The data augmentation strategy enhances the model's mAP50 and mAP50-95 metrics by over 24 

10% and 20%, respectively. Additionally, through comparative analysis of YOLOv8 configurations, 25 

YOLOv8s demonstrates superior results and achieves an effective balance between accuracy, training time, 26 

and computational resources, recommended for the identification of urban flood risk levels. This method 27 

provides a reliable technical foundation for real-time flood risk assessment and emergency management of 28 

urban transportation systems, with substantial potential for practical applications. 29 
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1. Introduction 31 

With the intensification of global climate change, extreme precipitation events have increasingly 32 

triggered urban pluvial flooding, severely disrupting the operation of major cities (Guan et al., 2015). 33 

Concurrently, the proportion of impervious surfaces has been rising due to rapid urbanization, significantly 34 

diminishing the infiltration capacity of urban landscapes and resulting in an increase in surface runoff 35 

(Chaudhary et al., 2020). This has led to more frequent urban flooding incidents, imposing substantial 36 

impacts and losses on urban infrastructure, transportation networks, and human wellbeing. For instance, on 37 

July 20, 2021, a rare extreme rainfall event, with a record-breaking maximum hourly rainfall of 201.9 mm, 38 

driven by Typhoon In-Fa struck Zhengzhou, Henan Province, China, leading to severe urban inundation that 39 

resulted in 292 casualties and direct economic losses reaching 53.2 billion (Yang and Wang, 2022). 40 

In the event of urban flooding, the ability to rapidly and accurately identify flood risk levels is crucial 41 

for urban flood prevention, mitigation, and emergency response decision making (Fohringer et al., 2015; 42 

Qian et al., 2022; Smith et al., 2017). Currently, urban waterlogging monitoring primarily relies on water 43 

level gauges (Fohringer et al., 2015). Although water level gauges can monitor flood depth in real-time, their 44 

deployment and maintenance are costly, and the monitoring range is restricted by the installation locations, 45 

limiting their suitability for wider spatial coverage (Chaudhary et al., 2020; Fohringer et al., 2015; Paul et 46 

al., 2020). Microwave remote sensing methods have limitations in spatial-temporal resolution and data 47 

frequency, and are susceptible to interference from clouds and obstructions, rendering them unable to 48 

determine flood depth (Chaudhary et al., 2020; DeVries, 2020; Liang, 2020). An intelligent and low-cost 49 

technology capable of identifying urban flood risks with extensive spatial coverage is urgently needed. 50 

In recent years, with the rapid development of social media and mobile internet, the application of social 51 

media data in flood monitoring and risk assessment has garnered extensive attention (Baranowski et al., 2020; 52 

Kankanamge et al., 2020; Li et al., 2023; Rosser et al., 2017; Smith et al., 2017). Platforms like Weibo, 53 

Twitter and Douyin provide users with channels to share flood information in real time, where user-generated 54 

content (UGC) contains rich flood imagery and geolocation data, offering a novel data source for urban flood 55 

level detection research (Iqbal et al., 2021). Concurrently, significant advancements have been made in 56 

computer vision technology, particularly in the application of convolutional neural networks (Voulodimos 57 

et al., 2018) , opening new avenues for the analysis of vast amounts of flood imagery data. Current studies 58 

have attempted to use objects in social media images, such as bridges (Bhola et al., 2018), roadside barriers 59 
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(Jiang et al., 2019), bicycles (Chaudhary et al., 2020), traffic cones (Jiang et al., 2020), traffic signs (Alizadeh 60 

Kharazi and Behzadan, 2021), water level markers (Jafari et al., 2021), and pedestrians (Li et al., 2023), as 61 

reference points for flood level estimation. While specific reference objects have shown promising results 62 

in studies, their infrequent occurrence hinders their broad application in urban settings. Pedestrians are 63 

prevalent in urban areas, but their low image resolution and diminished presence in severely flooded zones 64 

reduce their reliability and practicality as reference points for water level estimation. 65 

Vehicles serve as ideal reference objects for recognizing urban flood levels, attributed to their stable 66 

morphological features, widespread availability, and ease of detection. Current research leverages vehicles 67 

for urban flood water level identification. For example, Park et al. used Mask R-CNN to detect the submerged 68 

state of vehicles or their wheels as an indicator of flood levels. (Huang et al., 2020; Park et al., 2021), while 69 

Wan et al. utilized the YOLO series models for urban flood risk assessment and detection (Puliti and Astrup, 70 

2022; Redmon et al., 2016; Wan et al., 2024; Zhong et al., 2024). However, most studies use cars as reference 71 

objects; yet, the diversity of car types (e.g., sedans, SUVs, and pickup trucks) introduces significant 72 

variations in height and dimensions, affecting model generalization. Furthermore, the limited height of car 73 

bodies means they cannot provide effective water level information once submerged up to the roof, and their 74 

lower frequency of appearance in extreme weather makes it challenging to collect image datasets. 75 

In comparison, buses, as a critical component of urban transportation systems, possess standardized 76 

heights and structures with minimal variation between models, making them a more ideal reference object 77 

for flood water level monitoring. Buses overcome the limitations posed by cars, such as variations in size 78 

and limited height. Additionally, buses primarily operate in busy or essential areas, and their ability to 79 

withstand submersion is crucial for the continued operation of the urban public transportation system. Flood 80 

level recognition based on the submerged status of buses can intelligently assess their water-related risks, 81 

providing valuable support for urban transportation emergency management. 82 

In response to the gaps in existing research, this study aims to create a comprehensive dataset of 83 

submerged buses by sourcing flood images from social media platforms. Based on urban flood safety 84 

standards and bus height characteristics, the submerged states of buses will be categorized into specific levels. 85 

The dataset includes complex scenes (e.g., nighttime, occlusions, and incomplete bus bodies) to enhance 86 

data diversity. The YOLOv8 algorithm, as the most recent iteration of the YOLO series, has exhibited 87 

outstanding accuracy and rapid detection performance on the standard COCO (Common Objects in Context) 88 
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dataset. In this study, the YOLOv8 model is trained on a purpose-built dataset to improve its performance 89 

in identifying urban flood water levels with precision. This study introduces an innovative approach to flood 90 

level detection by leveraging the submerged states of buses, addressing the limitations of traditional 91 

recognition methods based on cars and other reference objects and overcoming the limitations of 92 

conventional monitoring techniques in broader applications. Specifically, the objectives of this study include:  93 

1) Developing a comprehensive dataset of submerged buses to examine the relationship between bus 94 

submersion and flood water levels. 95 

2) Evaluating the performance of YOLOv8 configurations in assessing flood severity through original and 96 

augmented data training, as well as experiments involving complex scenes. 97 

3) Proposing configuration recommendations for YOLOv8 aims to address diverse application scenarios, 98 

ensuring efficient deployment in varied urban environments. 99 

This paper is structured as follows: Section 2 provides a detailed description of the dataset construction, 100 

data augmentation strategies, and YOLOv8 model configurations, explains the experimental design, model 101 

evaluation metrics. Section 3 explains experimental results, followed by a comparative analysis of the 102 

findings. Section 4 discusses the experimental results and offers configuration recommendations for 103 

YOLOv8. Finally, Section 5 provides a summary of the main conclusions and highlights potential directions 104 

for future research. 105 

2. Methodology 106 

2.1 Data acquisition and processing 107 

2.1.1 Data acquisition 108 

In this study, a comprehensive dataset of submerged buses was constructed, comprising 1,008 images 109 

that capture buses in various statues of submersion. These submerged bus images were collected through 110 

keyword searches such as urban flooding and submerged bus on Baidu and Google, screenshots of relevant 111 

frames in short videos on Douyin, browsing urban flood news, and obtaining images from WeChat public 112 

accounts. Due to the diverse sources of image data, the images in exhibit differences in resolution and size. 113 

When selecting bus images, this study included complex and challenging scenes, such as nighttime scenes, 114 

partial occlusions, and incomplete buses, to ensure the dataset's diversity. The inclusion of these scenes may 115 

help enhance the diversity of the dataset, potentially enabling the trained model to better handle various flood 116 

scenes.  117 
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2.1.2 Data annotation 118 

This study assesses flood risk levels based on the submersion status of buses. To ensure accurate 119 

detection of the entire bus, four flood levels were defined, with detailed information on each flood level and 120 

corresponding bus examples provided in Table 1. Using Labelimg, a widely used annotation tool for object 121 

detection model training, the 1,008 acquired images were annotated to identify 1,562 instances, which were 122 

stored in YOLO format for subsequent training. Based on different states of bus movement, annotation types 123 

were divided into two categories: holistic and segmented. In holistic annotation, the entire bus is assigned a 124 

single flood level, while in segmented annotation, specific parts of the bus correspond to different levels, as 125 

illustrated in Fig. 1.  126 

Table 1 127 

Flooded bus dataset: bus instances and flood levels. 128 

Flood  

levels 
Analysis of bus submersion depths 

Range of 

water depth 

Number of  

instances 

Level1 
bottom of wheels submerged; inner wheel contour not 

visible 
0~20 cm 296 

Level2 

between bottom of wheels and halfway up the tires, 

between bottom of wheels and top edge of license plate, 

water reaches 1/4 of the step at bottom of door 

20~45 cm 585 

Level3 

between halfway up the tires and full tire coverage, 

between top edge of license plate and bottom edge of 

windshield 

45~100 cm 371 

Level4 
above the bottom edge of the windshield, fully 

submerged tires 
>100 cm 310 

 129 
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 130 
Fig. 1. Examples of dataset annotations: (a) The entire bus is assigned a single flood level; (b) The specific 131 

part of bus is assigned different levels. 132 

2.1.3 Data augmentation 133 

The original dataset, comprising 1,008 images, is relatively small in scale, necessitating its 134 

enhancement and expansion to increase background complexity, prevent overfitting, and improve robustness. 135 

Image data augmentation methods can be broadly categorized into two types: luminosity distortions and 136 

geometric distortions(Li et al., 2023). The former involves adjusting image brightness, contrast, hue, 137 

saturation, and adding noise, while the latter encompasses random scaling, cropping, flipping, and rotation 138 

operations. In this study, horizontal and vertical flipping, rotation, and random cropping were applied to 139 

augment the original dataset, as illustrated in Fig. 2. All images in the augmented dataset were annotated 140 

using Labelimg and stored in YOLO format. Additionally, considering the potential for manual annotation 141 

bias, a review process was conducted to verify the correctness of all bounding boxes and annotations related 142 

to flood risk levels.  143 
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 144 
Fig. 2. Examples of dataset augmentations: (a) Original image; (b) Rotation; (c) Horizontal and vertical 145 

flipping; (d) Random cropping. 146 

2.2 Object detection model 147 

A key feature of the YOLO model is its ability to achieve an optimal trade-off between speed and 148 

accuracy, enabling rapid and precise object detection across a wide range of application scenes (Wan et al., 149 

2024). This study constructed an object detection model based on the YOLOv8 source code, which operates 150 

on convolutional neural networks (CNN). YOLOv8 is an integrative and enhanced version building on 151 

previous YOLO generations and represents the latest iteration in the YOLO series. This version significantly 152 

improves computational efficiency and inference speed by optimizing the network architecture and refining 153 

inference algorithms. Moreover, YOLOv8 demonstrates higher stability in multi-object detection tasks under 154 

complex scenes, particularly with its advanced features such as automated hyperparameter tuning and 155 

dynamic convolution modules. These enhancements further boost the model’s flexibility and adaptability, 156 

making it more capable of meeting the diverse requirements of real-world applications. 157 

The YOLOv8 processing workflow includes image preprocessing, multi-level feature extraction 158 

through CNN, and multi-scale feature fusion via a feature pyramid and path aggregation network. Following 159 

this, adaptive anchor boxes are used for bounding box regression and classification prediction, with non-160 

maximum suppression applied to eliminate redundant bounding boxes. The model ultimately outputs the 161 

target’s class, bounding box, and confidence score, ensuring a balance between detection accuracy and 162 

efficiency. 163 

As shown in Fig. 3, the YOLOv8 network architecture is composed of three primary parts: Backbone, 164 

Neck, and Head. The Backbone consists of five convolutional modules, four C2f modules, and a SPPF 165 

module, all designed for feature extraction. The Neck refines and integrates features derived from the 166 
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Backbone, improving both the precision and reliability of object detection. The Head utilizes a decoupled 167 

structure to handle feature maps across multiple scales, generating the final detection outputs. 168 

 169 
Fig. 3. The YOLOv8 network structure: (a) YOLOv8 network diagram; (b) Conv module architecture 170 

diagram; (c) SPPF module architecture diagram; (d) C2f module architecture diagram. 171 

2.2.1 Experiment on object detection model 172 

Following data augmentation, the original dataset was expanded to 2,184 images for model training. In 173 

this study, four different YOLOv8 configurations—YOLOv8n, YOLOv8s, YOLOv8m, and YOLOv8l—174 

were used for training, each designed with specific network depths and widths to address varying application 175 

requirements. Table 2 presents the key characteristics of these four YOLOv8 configurations. The number of 176 

layers reflects the depth of the model, with a greater number of layers indicating a deeper model capable of 177 

capturing higher-level semantic features. However, this also leads to increased computational complexity. 178 

Parameters refer to the total number of learnable weights and biases within the model. A higher number of 179 

parameters signifies stronger representational capacity, making the model suitable for more complex tasks, 180 

but it also requires greater computational resources and longer training times. 181 

Table 2 182 

The primary characteristics of the four YOLOv8 configurations. 183 

Model Size Layers 
Params 

(M) 

mAP50-95on val 

(%) 

FLOPs 

(B) 

Speed 

CPU ONNX 

(ms) 

Speed 

A100 TensorRT 

(ms) 

YOLOv8n 640 225 3.2 37.3 8.7 80.4 0.99 

YOLOv8s 640 225 11.2 44.9 28.6 128.4 1.20 

YOLOv8m 640 295 25.9 50.2 78.9 234.7 1.83 

YOLOv8l 640 365 43.7 52.9 165.2 375.2 2.39 

2.2.2 Experimental setup 184 
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The model was implemented using PyTorch, a framework offering libraries for object detection models. 185 

Training was performed on NVIDIA Quadro RTX 3090 GPU. The original dataset contained 1,008 images, 186 

with 90% allocated for training and the remaining 10% for validation. The initial input size was set to 640 × 187 

640, with a batch size of 16 and 100 training epochs. In the data augmentation experiment, the augmented 188 

dataset expanded to 2,184 images, with 90% for training and 10% for validation, while all other settings 189 

remained the same as previously described.  190 

2.2.3 Complex scenes prediction experiment 191 

The performance of object detection models on the validation dataset does not fully represent its overall 192 

capabilities, as view of the bus, impacted by camera angle and distance, introduces numerous sources of 193 

interference. To address this, a complex scene prediction experiment was designed in this study to assess the 194 

detection capabilities of the different YOLOv8 configurations under challenging urban flood environments. 195 

In this experiment, YOLOv8 models trained on either the original or augmented datasets were used to 196 

conduct complex scene predictions, evaluating their performance under challenging conditions. Fig. 4 197 

presents two particularly demanding scene, not in the existing dataset, Fig. 4a shows a rainy scene with 198 

multiple vehicles, where the incomplete view of the bus, impacted by camera angle and distance, introduces 199 

numerous sources of interference, increasing detection complexity. Fig. 4b depicts a nighttime scene of a 200 

submerged bus, where low light and poor image quality significantly elevate the difficulty of detection. 201 

 202 
Fig. 4. Two complex urban flooding scenes: (a) Low flood risk scene with multiple vehicles present; (b) 203 

High flood risk scene with blurring and corruption. 204 

2.2.4 Comparative experiment with YOLOv5 model 205 

Although the introduction mentions that YOLOv8 is the latest algorithm in the YOLO series, a lack of 206 

comparative experimental data would be unconvincing. This study will compare and analyze the 207 

configuration demonstrating superior performance in the experiments with the corresponding configuration 208 
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in the YOLOv5 model. The experiments include training on the original dataset, training with data 209 

augmentation, and complex scene prediction, following the same experimental setup described earlier. 210 

2.3 Model evaluation 211 

The widely recognized evaluation metrics, such as precision (P), recall (R), and F1 scores are as follows: 212 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
(1) 213 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
(2) 214 

𝐹1 =
2 × 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
(3) 215 

Precision (P) quantifies the model's false detection rate, while Recall (R) evaluates its true detection 216 

rate. The F1-score evaluates model performance, particularly in object detection tasks, as it combines both 217 

P and R, representing their harmonic mean, where True Positive (TP) refers to the count of objects correctly 218 

identified as positive, True Negative (TN) denotes the count of non-objects accurately classified as negative, 219 

False Positive (FP) indicates the count of non-objects incorrectly classified as positive, and False Negative 220 

(FN) represents the count of objects wrongly classified as negative. 221 

In this study, mean Average Precision (mAP), a well-established evaluation indicator, is utilized as the 222 

primary criterion to evaluate the performance of different YOLOv8 configurations in detecting bus 223 

submersion states. The mAP is computed by summing the average precision across all labels and dividing 224 

the result by the total number of categories. A higher mAP value signifies improved average accuracy of the 225 

model, indicating enhanced overall detection performance. The formula for calculating mAP is as follows: 226 

𝑚𝐴𝑃 =
1

𝑛
∑𝐴𝑃𝑖

𝑛

𝑖=1

=
1

𝑛
∑∫ 𝑃𝑖(𝑅𝑖)𝑑𝑅𝑖

1

0

𝑛

𝑖=1

(4) 227 

As the output quality of the model varies with changes in the Intersection over Union (IoU) threshold, 228 

it is standard practice to evaluate model performance across multiple IoU thresholds. IoU quantifies the 229 

overlap between the detection box (generated by the algorithm) and the ground truth box (annotated using 230 

labeling software), with a range of values from 0 to 1. A higher IoU value signifies better prediction accuracy, 231 

representing a greater overlap between the detection box and the ground truth box. The formula for 232 

calculating IoU is as follows: 233 
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𝐼𝑜𝑈 =
𝐴 ∩ 𝐵

𝐴 ∪ 𝐵
(5) 234 

where A denotes the area of the detection box, while B refers to the area of the ground truth box.  235 

mAP50 and mAP50-95 are core metrics for evaluating object detection model performance, each 236 

measuring the model’s average detection precision under different IoU threshold conditions. mAP50 237 

indicates the average precision computed at an IoU threshold of 0.5, where an overlap of over 50% between 238 

the detection box and ground truth box qualifies as a correct detection. This metric primarily reflects the 239 

model’s basic object detection capability. mAP50-95, on the other hand, is the mean average precision 240 

calculated across ten different IoU thresholds, from 0.5 to 0.95 in 0.05 increments. This metric averages AP 241 

across multiple IoU thresholds, providing a comprehensive assessment of the model’s performance. A higher 242 

mAP50-95 value indicates stronger generalization ability across varying degrees of overlap within the same 243 

scene. Collectively, mAP50 and mAP50-95 provide a thorough and objective evaluation of model prediction 244 

accuracy and are extensively utilized in the domain of object detection. 245 

3. Result 246 

3.1 Training experimental results 247 

3.1.1 Analysis of training results on the original dataset 248 

This subsection provides a comparative evaluation of the training outcomes of the different YOLOv8 249 

models on the original dataset. Each model was trained under the experimental settings outlined in Section 250 

3.1. Fig. 5 illustrates the trend of mAP for each model during the training period, while Fig. 6 presents the 251 

prediction performance of each model across individual classes. 252 

As illustrated in Fig. 5a, following 100 epochs of training, the four models (YOLOv8n, YOLOv8s, 253 

YOLOv8m, YOLOv8l) each reach convergence, achieving mAP50 values on the validation dataset of 0.618, 254 

0.662, 0.611, and 0.639, respectively. YOLOv8s exhibits superior performance in this object detection task, 255 

maintaining a higher mAP50 across the training duration compared to the other configurations. YOLOv8l 256 

shows pronounced oscillations during the early training stages, requiring a longer stabilization period. 257 

Furthermore, it is observable that mAP50 for all models increases rapidly in the early epochs (0-20), after 258 

which the growth rate decelerates and plateaus. Notably, an increase in network width (param) and depth 259 

(layer) for YOLOv8 does not yield a substantial improvement in mAP50. 260 
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 261 
Fig. 5. The mAP of the validation dataset throughout the training process (a) The trend of mAP50; (b) The 262 

trend of mAP50-95.  263 

As shown in Fig. 6, the detection performance of the four YOLOv8 models varies across different flood 264 

risk levels. The YOLOv8s model demonstrates superior average precision across all flood risk categories, 265 

with an mAP50 of 0.662. For low flood risk category identification (level 1), all models achieve satisfactory 266 

detection results. However, for higher flood risk categories, the detection performance of YOLOv8n, 267 

YOLOv8m, and YOLOv8l is below expectations, with only YOLOv8s effectively capturing the submersion 268 

characteristics of buses at high water levels, thereby achieving relatively accurate identification. Although 269 

the YOLOv8l model has higher complexity and a larger parameter scale, its AP values for the level 3 and 270 

level 4 categories are 0.591 and 0.530, respectively, significantly lower than those of the YOLOv8s model, 271 

which are 0.632 and 0.602. This suggests that, for detecting high flood risk features, increased model 272 

complexity does not inherently result in improved detection accuracy. 273 
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 274 
Fig. 6. Precision-recall curve for each class of validation process: (a) YOLOv8n Validation Results; (b) 275 

YOLOv8s Validation Results; (c) YOLOv8m Validation Results; (d) YOLOv8l Validation Results. 276 

3.1.2 Analysis of training results on the augmented dataset 277 

This subsection provides a comparative evaluation of the training outcomes of the different YOLOv8 278 

models on the augmented dataset. Fig. 7 illustrates the mAP trend, while Fig. 8 presents the prediction 279 

performance of each model. 280 

As depicted in Fig. 7a, after 100 training epochs, the four models (YOLOv8n, YOLOv8s, YOLOv8m, 281 

YOLOv8l) each converge, reaching mAP50 values on the validation dataset of 0.722, 0.734, 0.716, and 282 

0.703, respectively. Data augmentation has yielded substantial improvements in both mAP50 and mAP50-283 

95 for all models, which will be analyzed in further detail in the next subsection. Following augmentation, 284 

YOLOv8s consistently outperforms the other models, with a higher mAP50 value. After incorporating data 285 

augmentation, the initial jump phenomenon observed during YOLOv8l training disappears, resulting in 286 

smoother curves and a more stable optimization process. However, compared to other models, the 287 
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performance improvement of YOLOv8l during the early stages of training remains relatively slower. This 288 

may be attributed to the model's higher complexity and larger parameter scale. 289 

 290 
Fig. 7. The mAP of the validation dataset throughout the training process after data augmentation: (a) The 291 

trend of mAP50; (b) The trend of mAP50-95. 292 

As illustrated in Fig. 8, following data augmentation, the four YOLOv8 models exhibit similar 293 

performance in detecting each flood risk level. The highest overall effectiveness is found in YOLOv8s, 294 

achieving an mAP50 of 0.734, with consistently high precision and recall across all flood risk categories. 295 

Post-augmentation, all models effectively capture the submersion characteristics of buses at various water 296 

levels, with AP values for each category exceeding 0.67, indicating robust performance on the validation 297 

dataset. Moreover, data augmentation significantly improved the detection capabilities of all models for 298 

higher-level categories (Level 3 and Level 4), as evidenced by the Precision-Recall curves shifting closer to 299 

the upper-right corner. For example, in the YOLOv8n model, the AP value for Level 3 increased from 0.602 300 

to 0.712, and for Level 4, from 0.574 to 0.746. Similarly, in the YOLOv8l model, the AP value for Level 3 301 

rose from 0.600 to 0.685, and for Level 4, from 0.549 to 0.679. Data augmentation enhanced the diversity 302 

of training samples, effectively mitigating the interference caused by variations in viewpoint and object scale. 303 

This not only improved the model's ability to detect higher-level targets but also enhanced the overall 304 

detection performance. 305 

14

https://doi.org/10.5194/egusphere-2024-4053
Preprint. Discussion started: 10 March 2025
c© Author(s) 2025. CC BY 4.0 License.



 

 

 

 

306 
Fig. 8. Precision-recall curve for each class of validation process after data augmentation: (a) YOLOv8n 307 

Validation Results; (b) YOLOv8s Validation Results; (c) YOLOv8m Validation Results; (d) YOLOv8l 308 

Validation Results. 309 

This study provides a comparative analysis of the detection performance of different YOLOv8 model 310 

configurations before and after data augmentation. Table 3 presents the mAP50, mAP50-95, and training 311 

times for the optimal YOLOv8 models  312 

Table 3 313 

mAP and training time for four YOLOv8 configurations: pre- and post-data augmentation. 314 

YOLO

v8 

mAP50 (%) 
 

mAP50-95 (%) 
 

training time (h) 

original 

dataset 

augmented 

dataset 

incre

ase 
 

original 

dataset 

augmente

d dataset 

incre

ase 

 

original 

dataset 

augmented 

dataset 

n 61.7  72.2  17.0  
 

43.0  55.2  28.4  
 

0.102  0.325  

s 66.0  73.4  11.2  
 

47.5  58.2  22.5  
 

0.152  0.483  

m 61.2  71.6  17.0  
 

45.0  57.4  27.6  
 

0.293  0.930  

l 63.8  70.3  12.2  
 

45.4  56.6  24.7  
 

0.438  1.390  

As indicated in Table 3, data augmentation led to significant enhancements in model detection 315 

performance, with substantial increases in both mAP50 and mAP50-95 across all configurations. For mAP50, 316 

all models demonstrated improvements exceeding 10%, while mAP50-95 gains surpassed 20% for each 317 
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configuration. YOLOv8m and YOLOv8n exhibited the highest mAP50 increases, whereas YOLOv8s 318 

showed the smallest gain at 11.2%. In terms of mAP50-95, YOLOv8n achieved the greatest improvement, 319 

rising from 43.0% to 55.2% (28.4% increase), while YOLOv8s displayed the smallest increase at 22.5%. 320 

In terms of overall performance, YOLOv8s achieved the highest mAP50 and mAP50-95 values across 321 

all configurations, reaching 73.4% and 58.2%, respectively, with a moderate training time. By contrast, 322 

YOLOv8l achieved similar mAP50 and mAP50-95 values but required nearly triple the training time. 323 

Similarly, YOLOv8m showed performance close to that of YOLOv8s, though with a nearly doubled training 324 

time. 325 

3.2 Experimental results in complex scenes 326 

3.2.1 Validation results of models on the original dataset 327 

This section presents a comparative evaluation of the validation outcomes for the four optimized 328 

YOLOv8 models trained on the original dataset. The numbers on the image represent the confidence level 329 

of the model for the detection results. As shown in Fig. 9, all four models can detect the flood risk level of 330 

the bus. However, only YOLOv8l correctly identifies it as level 1, albeit with low confidence, while the 331 

other models incorrectly classify it as level 2. At low flood risk levels, none of the models effectively capture 332 

the critical distinguishing features, highlighting limitations in their generalization capabilities. 333 
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 334 
Fig. 9. Comparison of YOLOv8 detection results in low flood risk scene with multiple vehicles present (pre-335 

augmentation): (a) Detection outcomes obtained using YOLOv8n; (b) Detection outcomes obtained using 336 

YOLOv8s; (c) Detection outcomes obtained using YOLOv8m; (d) Detection outcomes obtained using 337 

YOLOv8l. 338 

Moreover, Fig. 10 presents the validation results at a high flood risk level. All four optimal YOLOv8 339 

models successfully detect the blurred bus in the image and identify its submerged state with high confidence. 340 

For the bus located at the upper-right edge of the image, none of the models detected it due to low lighting, 341 

though they were able to make partial level assessments. The models have learned to extract key features 342 

associated with incomplete bus bodies from the dataset. Furthermore, YOLOv8l incorrectly classified the 343 

bus station and surrounding environment as level 4 submersion. 344 

 345 
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 346 
Fig. 10. Comparison of YOLOv8 detection results in high flood risk scene with blurring and corruption (pre-347 

augmentation): (a) Detection outcomes obtained using YOLOv8n; (b) Detection outcomes obtained using 348 

YOLOv8s; (c) Detection outcomes obtained using YOLOv8m; (d) Detection outcomes obtained using 349 

YOLOv8l. 350 

3.2.2 Validation results of models on the augmented dataset 351 

This section provides a comparative evaluation of the validation outcomes for the four optimized 352 

YOLOv8 models after data augmentation. As shown in Fig. 11, all four models accurately detect the flood 353 

risk level of the bus with high confidence. In this detection, the best performance is found inYOLOv8n, 354 

exhibiting higher confidence levels than the other models. Besides, both YOLOv8s and YOLOv8m 355 

unexpectedly generated a level 2 prediction box during bus detection. 356 
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 357 
Fig. 11. Comparison of YOLOv8 detection results in low flood risk scene with multiple vehicles present 358 

(post-augmentation): (a) Detection outcomes obtained using YOLOv8n; (b) Detection outcomes obtained 359 

using YOLOv8s; (c) Detection outcomes obtained using YOLOv8m; (d) Detection outcomes obtained using 360 

YOLOv8l. 361 

Fig. 12 presents the validation results at a high flood risk level. All four optimal YOLOv8 models 362 

successfully detect the blurred bus in the image, accurately identifying its submerged state with high 363 

confidence. The highest confidence is found in YOLOv8s, without any false detections. However, none of 364 

the models detected the bus body located at the upper-right edge of the image, even after data augmentation. 365 

Besides, YOLOv8m and YOLOv8l incorrectly classified the bus station and background environment as 366 

level 4 submersion. 367 

In summary, data augmentation resulted in notable improvements in both recognition accuracy and 368 

confidence across the four optimal models, enhancing their ability to accurately detect bus submersion states. 369 

In addition, detection performance under low-light conditions remains an area requiring further refinement. 370 
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 371 
Fig. 12. Comparison of YOLOv8 detection results in high flood risk scene with blurring and corruption (pre-372 

augmentation): (a) Detection outcomes obtained using YOLOv8n; (b) Detection outcomes obtained using 373 

YOLOv8s; (c) Detection outcomes obtained using YOLOv8m; (d) Detection outcomes obtained using 374 

YOLOv8l. 375 

3.3 Experimental results compared with YOLOv5 376 

3.3.1 Analysis of training experiment results 377 

Fig. 13 displays the precision-recall curves from the training results. A comparison reveals that 378 

YOLOv8s outperforms YOLOv5s on both the original and augmented datasets, indicating that YOLOv8s 379 

achieves higher detection accuracy in image recognition tasks. On the original dataset, YOLOv5s attains an 380 

mAP50 of 0.555, while YOLOv8s reaches 0.662, reflecting a performance gap of 19.3%. After data 381 

augmentation, although the performance gap between YOLOv5s and YOLOv8s narrows, YOLOv8s 382 

continues to lead. Additionally, results from the two training experiments with YOLOv5 indicate that data 383 

augmentation has a substantial impact on enhancing the training effectiveness of YOLO models 384 
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 385 
Fig. 13. Precision-recall curves from the training results: (a) YOLOv5s validation results on original dataset; 386 

(b) YOLOv5s validation results on augmented dataset; (c) YOLOv8s validation results on original dataset; 387 

(d) YOLOv8s validation results on augmented dataset. 388 

3.3.2 Analysis of scene prediction experiment results 389 

This section evaluates the stability and effectiveness of YOLOv5s and YOLOv8s under challenging 390 

conditions by testing their performance in two complex urban scenes. Fig. 14 and Fig. 15 illustrate the 391 

detection results of YOLOv5s and YOLOv8s in low and high flood risk scenes, respectively. In the low-risk 392 

scene, YOLOv5s accurately identifies the bus and correctly predicts its submersion status, similar to 393 

YOLOv8s; however, the confidence level of YOLOv5s, even after data augmentation, shows limited 394 

improvement. YOLOv8s, on the other hand, demonstrates higher detection confidence and accuracy 395 

following data augmentation. In the high-risk scene, characterized by blurred or partially degraded images, 396 

YOLOv5s performs notably well. YOLOv5s detects targets that YOLOv8s fails to recognize, likely due to 397 

its capacity for handling noisy data. This difference in performance under extreme conditions suggests that 398 

the network structure of YOLOv5s may enhance detection in low-quality images, offering insights for 399 
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potential optimizations in YOLOv8s. 400 

 401 
Fig. 14. Comparison of YOLO detection results in low flood risk scene with multiple vehicles present: (a) 402 

YOLOv5s detection results on original dataset; (b) YOLOv5s detection results on augmented dataset; (c) 403 

YOLOv8s detection results on original dataset; (d) YOLOv8s detection results on augmented dataset. 404 

 405 
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 406 
Fig. 15. Comparison of YOLO detection results in high flood risk scene with blurring and corruption: (a) 407 

YOLOv5s detection results on original dataset; (b) YOLOv5s detection results on augmented dataset; (c) 408 

YOLOv8s detection results on original dataset; (d) YOLOv8s detection results on augmented dataset. 409 

4. Discussion 410 

4.1 Impact of data augmentation  411 

The dataset size plays a critical role in determining the performance of YOLOv8 models. The object 412 

detection experiment results in Section 3.1 demonstrate the positive effect of data augmentation on model 413 

performance. Models trained with the augmented dataset achieved substantial improvements, with mAP50 414 

and mAP50-95 on the validation set increasing by over 10% and 20%, across all YOLOv8 configurations. 415 

This indicates that data augmentation significantly enhances detection accuracy while improving model 416 

stability and generalization across various IoU thresholds. 417 

The impact of data augmentation on performance varies across different YOLOv8 models. YOLOv8n, 418 

the configuration with the fewest parameters, demonstrates the largest performance gain post-augmentation, 419 

with the most substantial increases in both mAP50 and mAP50-95. In contrast, YOLOv8s, which performed 420 

well on the original dataset, exhibits the smallest performance improvement after augmentation. This 421 

suggests that YOLOv8s is already highly effective at extracting key features of detection targets, even with 422 

a relatively small dataset. Although the performance gain for YOLOv8s is minimal, it consistently delivers 423 
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the best results across multiple experiments. 424 

The data augmentation strategy significantly enhanced model performance in complex scene 425 

experiments. Prior to augmentation, all four YOLOv8 models may exhibited false detections and low 426 

confidence levels under challenging conditions such as low light at night, blurred imagery, and partial 427 

occlusions. Post-augmentation, however, each YOLOv8 model showed notable improvements in detection 428 

accuracy and confidence in complex scenes. For instance, in multi-vehicle environments, the augmented 429 

YOLOv8 models were able to accurately detect the submersion status of buses with high confidence, 430 

whereas pre-augmentation models failed to make correct identifications. These findings indicate that data 431 

augmentation plays a crucial role in enhancing model recognition capabilities under complex conditions, 432 

enabling more robust performance in the variable environments encountered in practical applications. 433 

The enhancement in model performance achieved through the data augmentation strategy stems from 434 

the YOLOv8 model's robust learning and generalization capabilities. By increasing data diversity through 435 

augmentation techniques such as rotation, flipping, and random cropping, the model is compelled to extract 436 

the critical features of detection targets with greater precision. Additionally, the expanded dataset after 437 

augmentation provides a larger volume of annotated instances, enriching the training samples from which 438 

the model can learn. This enhanced dataset supports more robust feature extraction, contributing to overall 439 

performance gains. 440 

4.2 Impact of detection target 441 

In previous studies, cars have commonly been used for flood detection (Puliti and Astrup, 2022; 442 

Redmon et al., 2016; Wan et al., 2024; Zhong et al., 2024) . However, the diversity in car models limits 443 

annotation standardization and reduces the model’s generalization capability. Additionally, the relatively 444 

low height of cars constrains their effectiveness as reliable flood detection references. For instance, in Wan 445 

et al.’s study on complex scenes (Wan et al., 2024) , only sedans were successfully identified, while pickup 446 

trucks in the images were challenging to detect. In contrast, buses offer standardized body structures, greater 447 

urban coverage, and consistent height characteristics, making them a more promising reference object for 448 

flood detection. The experiments and validations in this study demonstrate the strong performance of the 449 

object detection model trained on bus images, with its PR curve closely approaching the upper-right corner. 450 

The best model achieved an mAP50 of 0.734 across all categories on the test dataset, surpassing the previous 451 
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study result of mAP50 at 0.707 (Wan et al., 2024). Moreover, since buses predominantly operate in busy or 452 

critical areas, their ability to withstand water directly impacts the stability of urban public transportation 453 

systems. The bus submersion-based detection approach developed in this study effectively enhances flood 454 

risk assessment accuracy, providing a more scientific basis for future urban flood monitoring and emergency 455 

management. 456 

4.3 Recommended configurations for YOLOv8 457 

Based on the comprehensive performance of different YOLOv8 configurations during training and in 458 

complex scenes, this study recommends prioritizing the YOLOv8s model for urban flood detection using 459 

bus imagery. Although the YOLOv8l model theoretically offers higher network complexity and parameter 460 

count, which should enable more granular feature extraction, its performance improvements in this 461 

experiment were not significant. In contrast, the YOLOv8s model demonstrated superior results across 462 

multiple performance metrics and achieved an effective balance between model accuracy, training time, and 463 

computational resource requirements. Therefore, in environments with limited resources and high 464 

computational costs, YOLOv8s has proven to be the most advantageous choice. 465 

When computational resources and dataset availability are ample, YOLOv8m or YOLOv8l should be 466 

considered as priority options. As dataset size expands and more computational resources become available, 467 

the performance potential of YOLOv8m and YOLOv8l models may be more fully realized. With larger 468 

datasets, the deeper network structures and advanced feature extraction capabilities of YOLOv8m and 469 

YOLOv8l can better capture critical features and details of the targets, resulting in higher accuracy and 470 

stability in object detection. 471 

5. Conclusions 472 

This study proposes an urban flood detection method based on the YOLOv8 deep learning model, which 473 

accurately assesses flood risk levels by identifying the submersion state of buses. A dataset of 1,008 images 474 

depicting submerged buses was collected from online platforms and expanded to 2,184 images using data 475 

augmentation strategies. Subsequently, the submersion states of buses were annotated into four levels for 476 

training the object detection model. Finally, the performance of various YOLOv8 models was compared 477 

through data augmentation and complex scene validation experiments, resulting in the following 478 

experimental insights: 479 
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1) The highest detection accuracy for flood risk levels is achieved by YOLOv8s. Although YOLOv8m 480 

and YOLOv8l demonstrated comparable overall performance, they required significantly greater 481 

computational resources and training time. 482 

2) The application of data augmentation significantly enhanced the detection accuracy and robustness of 483 

the YOLOv8 models, improving their recognition precision and generalization capabilities when 484 

confronted with complex scenes. 485 

3) The use of buses as reference objects for flood detection presents notable advantages, including high 486 

consistency and standardized structure, overcoming the limitations of previous reference objects such 487 

as cars, thereby making them more suitable for urban flood detection. 488 

4) This study offers configuration recommendations for YOLOv8 models tailored to urban flood 489 

detection based on the submersion state of buses. 490 

This study supplements and extends existing research on flood detection by validating the feasibility 491 

and effectiveness of using buses as reference objects for the identification of urban flood risk levels. This 492 

study explores the application potential of bus submersion state detection within the YOLOv8 framework. 493 

This approach broadens the technical pathways for urban flood monitoring and provides crucial support for 494 

flood emergency management within urban transportation systems, demonstrating practical value in the field 495 

of disaster prevention and mitigation. 496 

This study primarily relies on social media image recognition to determine flood risk levels. However, 497 

the model's performance remains limited in certain complex scenes, such as those involving extreme lighting 498 

conditions. Additionally, the model currently lacks the capability to quantitatively measure flood depth, 499 

which is critical for precise flood risk assessment. Future research will concentrate on devising methods for 500 

quantitative flood depth estimation using bus submersion states and creating noise-resistant model 501 

architectures to improve the model's applicability and precision. 502 
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